

## Impact of Land Use and Land Cover Changes on Ecosystem Services in Southwest China

Presented by

**HU** Huabin

# OUTLINE



- Introduction
- Methods
- Results
- Discussion

Ecosystem services refer to the conditions and processes provided by ecosystems and species for human to sustain.

## Introduction



- Land use / land cover change
  - Top 10 priority research topics for landscape ecology (Wu & Hobbs 2002)
    - causes, processes, and consequences of land use and land cover change
    - integrating humans and their activities into landscape ecology
- Ecosystem services & values
  - 'free gifts of nature' ? "Ecosystem are not fully 'captured' in commercial markets or adequately quantified in terms of comparable with economic services and manufactured capital, they are often given too little weight in policy decision"(Costanza 1997). "ecosystems are poorly understood, scarcely monitored, and undergoing rapid degradation and depletion. Often the importance of ecosystem services is widely appreciated only upon their loss."(Daily 2000)
  - global biosphere values of 17 ecosystem services provided by 16 dominant global biomes. (Costanza et al. 1997)

|           |          |                        | Ecosystem functions                                                                                                                  | Examples                                                                                                                                                              |  |  |
|-----------|----------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|           | 1        | gas regulation         | Regulation of atmospheric chemical composition.                                                                                      | CO <sub>3</sub> /O <sub>3</sub> balance, O <sub>3</sub> for UVB protection, and SO <sub>4</sub> levels.                                                               |  |  |
|           | 2        | climate regulation     | Regulation of global temperature, precipitation, and<br>other biologically mediated climatic processes at<br>global or local levels. | Greenhouse gas regulation, DMS production affecting<br>cloud formation.                                                                                               |  |  |
| Псс       | 3        | disturbance regulation | Capacitance, damping and integrity of ecosystem<br>response to environmental fluctuations.                                           | Storm protection, flood control, drought recovery and<br>other aspects of habitat response to environmental<br>variability mainly controlled by vegetation structure. |  |  |
|           | 4        | water regulation       | Regulation of hydrological flows.                                                                                                    | Provisioning of water for agricultural (such as imigation)<br>or industrial (such as milling) processes or<br>transportation.                                         |  |  |
| (S        | 5        | water supply           | Storage and retention of water.                                                                                                      | Provisioning of water by watersheds, reservoirs and<br>aquifers.                                                                                                      |  |  |
| /ste      | 6        | erosion control        | Retention of soil within an e-cosystem.                                                                                              | Prevention of loss of soil by wind, runoff, or other<br>removal processes, storage of stilt in lakes and<br>wetlands.                                                 |  |  |
| Ð         | 7        | soil formation         | Soil formation processes.                                                                                                            | Weathering of rock and the accumulation of organic<br>material.                                                                                                       |  |  |
| $\supset$ | 8        | nutrient cycling       | Storage, internal cycling, processing and<br>acquisition of nutrients.                                                               | Nitrogen fixation, N, P and other elemental or nutrient cycles.                                                                                                       |  |  |
| 0         | 9        | waste treatment        | Recovery of mobile nutrients and removal or<br>breakdown of excess or xemic nutrients and<br>compounds.                              | Waste treatment, pollution control, detoxification.                                                                                                                   |  |  |
| S         | 10       | pollination            | Movement of floral gametes.                                                                                                          | Provisioning of polinators for the reproduction of plant<br>populations.                                                                                              |  |  |
| ic        | 11       | biological control -   | Trophic-dynamic regulations of populations.                                                                                          | Keystone predator control of prey species, reduction of<br>herbivory by top predators.                                                                                |  |  |
| es<br>S   | 12<br>13 | habitat / refugia      | Habitat for resident and transient populations.                                                                                      | Nurseries, habitat for migratory species, regional<br>habitats for locally harvested species, or overwintering<br>grounds.                                            |  |  |
|           | 14       | raw material           | That portion of gross primary production<br>extractable as food.                                                                     | Production of fish, game, crops, nuts, fruits by hunting,<br>gathering, subsistence farming or fishing.                                                               |  |  |
|           |          |                        | That portion of gross primary production<br>extractable as raw materials.                                                            | The production of lumber, fuel or fodder.                                                                                                                             |  |  |
|           | 15       | genetic resources      | Sources of unique biological materials and<br>products.                                                                              | Medicine, products for materials science, genes for<br>resistance to plant pathogens and crop pasts,<br>omamental species (pets and horticultural varieties of        |  |  |
|           | 16       | recreation             |                                                                                                                                      | pentsj.                                                                                                                                                               |  |  |
|           | 17       | cultural               | Providing opportunities for recreational activities.                                                                                 | Eco-tourism, sport fishing, and other outdoor<br>recreational activities.                                                                                             |  |  |
|           |          | 17 Oultural            | Providing opportunities for mon-commercial uses.                                                                                     | Aesthetic, artistic, educational, spiritual, and/or<br>scientific values of ecosystems.                                                                               |  |  |



#### Which ecosystems supply what services? How much?

|                        |                          |            |            |             |            |        |         | Ecosy     | saen sen        | CES (1994 ( | 199 Le Ju   |            |          |            |           |           |            |          |             |                             |
|------------------------|--------------------------|------------|------------|-------------|------------|--------|---------|-----------|-----------------|-------------|-------------|------------|----------|------------|-----------|-----------|------------|----------|-------------|-----------------------------|
| Biome                  | Area                     | 1          | z          | 3           | 4          | 5      | 6       | 7         | 8               | 9           | 10          | 11         | 12       | 13         | 14        | 15        | 16         | 17       | Total value | Total global                |
|                        | $(ha \times 10^{\circ})$ | Gas        | Climate    | Disturbance | Water      | Water  | Erosion | Soll      | <b>Nutrient</b> | Wester      | Pollination | Biological | Habitati | Food       | Raw       | Ganetic   | Recreation | Cultural | per ha      | flow value                  |
|                        |                          | regulation | regulation | regulation  | regulation | supply | control | formation | sycling         | reament     |             | control    | ratugia  | production | materials | resources |            |          | (\$ha:'yr') | (\$yr~1 × 10 <sup>3</sup> ) |
| Marine                 | 36,302                   |            |            |             |            |        |         |           |                 |             |             |            |          |            |           |           |            |          | 677         | 20,949                      |
| Open ocean             | 33,200                   | 38         |            |             |            |        |         |           | 118             |             |             | 5          |          | 15         | ٥         |           |            | 76       | 262         | 8,381                       |
| Coestal                | 3,102                    |            |            | BB          |            |        |         |           | 3,677           |             |             | 38         | в        | 93         | 4         |           | 82         | 62       | 4,052       | 12,568                      |
| Estuaries              | 180                      |            |            | 567         |            |        |         |           | 21,100          |             |             | 78         | 131      | 521        | 25        |           | 381        | 29       | 22,632      | 4,110                       |
| aigae bods             | 500                      |            |            |             |            |        |         |           | 19,002          |             |             |            |          |            | s         |           |            |          | 19,004      | 3,801                       |
| Cotal reets            | 62                       |            |            | 2,790       |            |        |         |           |                 | 58          |             | 5          | 7        | 550        | 27        |           | 3,006      | 1        | 6,075       | 375                         |
| Shelf                  | 2,680                    |            |            |             |            |        |         |           | 1,431           |             |             | 39         |          | 68         | 2         |           |            | 70       | 1,610       | 4,283                       |
| Terrestrial            | 15,323                   |            |            |             |            |        |         |           |                 |             |             |            |          |            |           |           |            |          | 804         | 12,319                      |
| Forest                 | 4,855                    |            | 141        | 2           | 2          | 3      | 96      | 10        | 3161            | 87          |             | 2          |          | 43         | 138       | 16        | 96         | 2        | 969         | 4,706                       |
| Tropical forest        | 1900                     |            | 223        | 5           | 6          |        | 245     | 10        | 962             | 87          |             |            |          | 32         | 315       | -41       | 112        | 2        | 2.007       | 3.813                       |
| Temperate/boreal       | 2,965                    |            | 88         |             | 0          | -      |         | 10        |                 | 87          |             | ¢          |          | 50         | 25        |           | 36         | 2        | 302         | 894                         |
| Grass/rangeland        | 3,896                    | 7          | 0          |             | з          |        | 29      | 1         |                 | 87          | 25          | 23         |          | 67         |           | D         | z          |          | 232         | 906                         |
| Wetlands               | 330                      | 133        |            | 4,539       | 15         | 3,800  |         |           |                 | 4,177       |             |            | 304      | 256        | 106       |           | 574        | 881      | 14,785      | 4,879                       |
| Tidal marsh /          | 165                      |            |            | 1,839       |            |        |         |           |                 | 6,606       |             |            | 169      | 466        | 162       |           | 658        |          | 9,990       | 1,648                       |
| Swamps/<br>floodplains | 165                      | 265        |            | 7,240       | 20         | 7,600  |         |           |                 | 1,680       |             |            | 409      | 47         | -43       |           | 491        | 1,381    | 19,580      | 3,231                       |
| Lakes / river          | 500                      |            |            |             | 5,445      | 2317   |         |           |                 | 005         |             |            |          | 41         |           |           | 230        |          | 8,498       | 1,700                       |
| Desert                 | 1,925                    | 6          | 20/        | fr          | ٦m         | ) r    | m       | ari       | nc              | ם נ         | 200         | ICI        | 10.      | tor        | nc        |           |            |          |             |                             |
| Tundra                 | 74(3                     | U          |            |             |            |        | 110     | <b>X</b>  |                 |             |             |            | y 0      |            |           |           |            |          |             |                             |
| loe/rock               | 1,640                    |            |            |             |            |        |         |           |                 |             |             |            |          |            |           |           |            |          |             |                             |
| Cropland               | 1,400                    | <u></u>    | 70/        | £.,         |            | 1      |         |           |                 |             | 14          | 24         |          | 54         | 4 ~ .     |           |            |          | 92          | 128                         |
| Urban                  | 332                      | 3          | 1 %        | o Tr        | nc         | 11     | er      | ГE        | est             | <b>FI</b>   | 31 E        | <b>3C</b>  | JS       | yS         | te        | ms        | 5          |          |             |                             |
| Total                  | 51,625                   | 1,341      | 684        | 1,779       | U15        | 1,6392 | 576     | 53        | 17,075          | 2,277       | 117         | 417        | 124      | 1,306      | 721       | 79        | 875        | 3,015    |             | 33,298                      |
|                        |                          |            |            |             |            |        |         |           |                 |             |             |            |          |            |           |           |            |          |             |                             |

Numbers in the body of the table are in 8 har<sup>-1</sup> yr<sup>-1</sup>. Row and column totals are in 8 yr<sup>-1</sup> × 10<sup>0</sup>, column totals are the sum of the per ha services in the table and the area of each biome, net the sum of the per ha services themselves. Shaded cells indicate services that do not occur or are known to be negligible. Open cells indicate lack of available information.







- Methods of ecosystem service valuation
  - Classification
    - Direct uses: goods
    - Indirect uses: services)
  - Valuation
    - Energy:
    - Material:
    - Monetary:







## Methods

## Study area

#### Xishuangbanna: a Dai Autonomous Prefecture in S Yunnan

#### Lancang River Biodiversity:

total land area of **1,915,167** ha, it covers only **0.2%** of the land area of China, but supports nearly **16%** of its higher plant species, and more than **23%** of China's animal species can be found here.

about **14%** of the total land area as nature reserve.

•Local economy: crop production (tea, rubber, fruits), tourism etc. The GNP for the year 1988 and 2003 were \$163.20 million (NPV) and \$701.09 million respectively.



Menglun: a typical township in
Xishuangbanna, area: 33488 ha.
ecologically important
representative of the environmental and socioeconomic conditions of Xishuangbanna.
Luosuo River, winds from the north to the southwest to feed the Mekong River.



#### About Menglun



More than 10 ethnic groups in Menglun Township, *Dai, Hani, Han, Yi, Ji'nuo, Lahu, Wa, Bai. Yao, Hui, Bulang*, etc.

- Dai and Hani accounted for 56.3% and 22.4% respectively; the Han Chinese is only 14.3%. Most of the villages are mainly composed of the Dai.
- Traditionally, Dai people live in the lowland area near river, paddy cultivation is their major agriculture activity; while Hani people live in mountainous area, slash-and-burn farming is their major way of food production
- Since 1982, the rural economic reform had resulted in reallocation of land to individual households; therefore, villagers have more freedom to use their land for different economic activities (tropical fruits, tea, rubber plantation). A series of ecological problems emerged since then.
- The GNP for the year 1988 and 2003 were \$3.11 million (NPV) and \$9.10 million respectively



The data used to estimate the areas of different land use and land cover for Xishuangbanna and Menglun were extracted from:

- cloud-free LANDSAT TM / ETM images obtained in February 1988 and March 2003.
- The data sets were re-geo-referenced with the aids of 1:50,000 topographic maps, and GPS points using the ERDAS Imagine software, which incorporates functions for both image processing and the use of geographic information system (GIS).
- We used the RESAMPLING module to resample the data into a Universal Transverse Mercator (UTM) coordinate system.
   Average root mean square (RMS) error of less than 0.5 was achieved for both images and the pixel size were kept as 30 x 30 m.

#### Land use Classification



- The LANDSAT data were classified by using a combination of unsupervised and supervised classification techniques.
- Some aerial photos of 1988 and an ikonos satellite image (obtained in February 2002) covering part of the Menglun township were used as references for land use classification;
- we conducted intensive ground truth studies, Classified images generally agree visually with actual land cover.

#### The **10 land use categories** were:

- (1) arable land, including paddy field and rain fed upland;
- (2) orchard, including plantations of fruit trees, tea, vanilla, other cash crops;
- (3) rubber plantation;
- (4) special land use including arboretum, nursery, experimental fields, bamboo forest, and pine forest etc.;
- (5) swidden field refer to land abandoned after slash-and-burn cultivation;
- (6) shrub land (with woody bushes greater than 20% and tree cover less than 20%);
- (7) waste land/logging area, referring to land covered by grasses and difficult to use;
- (8) river;
- (9) forested area, including nature reserve, primary and secondary forests;
- (10) settlement, including urban and rural settlements with buildings.

#### Assignment of Ecosystem Service Value



In order to obtain ecosystem service values for various ground cover types, the 10 land cover categories used to classify LANDSAT TM/ETM datasets were compared with the 16 biomes identified in Costanza et al.'s (1997) ecosystem service valuation model. The most representative biome was used as a proxy for each land cover category:

Table 1 Costanza et al. (1997) biome equivalents for the land categories, and corresponding ecosystem values

| Land use and land cover categories                        | Equivalent biome | Ecosystem service coefficient (\$ ha <sup>-1</sup> yr <sup>-1</sup> ) |
|-----------------------------------------------------------|------------------|-----------------------------------------------------------------------|
| Arable land including paddy field, rain fed               | Cropland         | 92                                                                    |
| upland, orchard, rubber plantation                        |                  |                                                                       |
| Special land uses including arboretum,                    | Forest           | 969                                                                   |
| nursery, experimental areas, bamboo forest,               |                  |                                                                       |
| pine forest                                               |                  |                                                                       |
| Forested area                                             | Tropical forest  | 2007                                                                  |
| <u>Swidden</u> field, shrub land, <mark>waste</mark> land | Grass/rangeland  | 232                                                                   |
| River                                                     | Lakes/river      | 8498                                                                  |
| Settlement                                                | Urban            | 0                                                                     |



The total value of ecosystem service in the study area in 1988 and 2003 was obtained as follows:

$$\mathsf{ESV} = \Sigma \quad (\mathsf{A}_k \times \mathsf{VC}_k)$$

where ESV is the estimated ecosystem service value, A<sub>k</sub> is the area (ha) and VC<sub>k</sub> the value coefficient (\$ ha<sup>-1</sup> per year) for land use category 'k'.

we also estimated the impacts of such changes on individual ecosystem functions within the study area. The values of services provided by individual ecosystem functions were calculated using the following equation:

$$\mathsf{ESV}_{\mathsf{f}} = \Sigma \left( \mathsf{A}_{\mathsf{k}} \times \mathsf{VC}_{\mathsf{fk}} \right)$$

where ESV<sub>f</sub> is the estimated ecosystem service value of function 'f', A<sub>k</sub> is the area (ha) and VC<sub>fk</sub> the value coefficient of function f (\$ha<sup>-1</sup> yr<sup>-1</sup>) for land use category 'k'.





#### Land use changes





|                   |         |           | Xishuang | gbanna |           | Menglun |          |           |         |            |        |         |
|-------------------|---------|-----------|----------|--------|-----------|---------|----------|-----------|---------|------------|--------|---------|
| Land use category |         | Area (ha) |          | P      | ercentage |         |          | Area (ha) |         | Percentage |        |         |
|                   | 1988    | 2003      | Change   | 1988   | 2003      | Change  | 1988     | 2003      | Change  | 1988       | 2003   | Change  |
| Arable land       | 81922   | 87970     | 6048     | 4.28%  | 4.59%     | 0.32%   | 1425.33  | 1406.04   | -19.29  | 4.26%      | 4.20%  | -0.06%  |
| Orchard           | 4303    | 17974     | 13671    | 0.22%  | 0.94%     | 0.71%   | 462.21   | 775.3     | 313.09  | 1.38%      | 2.32%  | 0.93%   |
| Rubber plantation | 72714   | 216074    | 143360   | 3.80%  | 11.28%    | 7.49%   | 4039.57  | 13101.42  | 9061.85 | 12.06%)    | 39.12% | 27.06%  |
| Special land use  | 61078   | 72930     | 11852    | 3.19%  | 3.81%     | 0.62%   | 70.55    | 72.9      | 2.35    | 0.21%      | 0.22%  | 0.01%   |
| Swidden field     | 287888  | 221240    | -66648   | 15.03% | 11.55%    | -3.48%  | 4414.42  | 247.71    | -4166.7 | 13.18%     | 0.74%  | -12.44% |
| Shrub land        | 239708  | 353532    | 113824   | 12.52% | 18.46%    | 5.94%   | 5791.56  | 6371.11   | 579.55  | 17.29%     | 19.02% | 1.73%   |
| Waste land        | 63257   | 52865     | -10392   | 3.30%  | 2.76%     | -0.54%  | 301.6    | 881.46    | 579.86  | 0.90%      | 2.63%  | 1.73%   |
| River             | 7571    | 8058      | 487      | 0.40%  | 0.42%     | 0.03%   | 532.39   | 560.94    | 28.55   | 1.59%      | 1.68%  | 0.09%   |
| Forested area     | 1094331 | 880794    | -213537  | 57.14% | 45.99%    | -11.15% | 16324.76 | 9857.14   | -6467.6 | 48.75%     | 29.43% | -19.31% |
| Settlement        | 2395    | 3730      | 1335     | 0.13%  | 0.19%     | 0.07%   | 125.96   | 214.33    | 88.37   | 0.38%      | 0.64%  | 0.26%   |

#### Table 2 Land use and land cover change detection



#### Land Use / land Cover Change: Menglun









Boundary Paddy field Swidden land Orchard **Rubber plantation** Special land use Forested area Shrub land Logging area Settlement & Road **River & Lakes** 

2468

|                   |           | Xishuang | gbanna     |                              | Menglun       |          |            |                              |  |  |
|-------------------|-----------|----------|------------|------------------------------|---------------|----------|------------|------------------------------|--|--|
| Land use          | ESV (\$ m | nillion) | Ch         | ange                         | ESV (\$ m     | nillion) | Change     |                              |  |  |
|                   | 1988      | 2003     | \$ million | $\operatorname{CC}_k * (\%)$ | 19 <b>8</b> 8 | 2003     | \$ million | $\operatorname{CC}_k * (\%)$ |  |  |
| Arable land       | 7.54      | 8.09     | 0.56       | 0.02%                        | 0.1311        | 0.1294   | -0.0018    | 0.00%                        |  |  |
| Orchard           | 0.40      | 1.65     | 1.26       | 0.05%                        | 0.0425        | 0.0713   | 0.0288     | 0.07%                        |  |  |
| Rubber plantation | 6.69      | 19.88    | 13.19      | 0.53%                        | 0.3716        | 1.2053   | 0.8337     | 2.06%                        |  |  |
| Special land use  | 59.18     | 70.67    | 11.48      | 0.46%                        | 0.0684        | 0.0706   | 0.0023     | 0.01%                        |  |  |
| Swidden field     | 67.37     | 51.77    | -15.60     | -0.63%                       | 1.0330        | 0.0580   | -0.9750    | -2.41%                       |  |  |
| Shrub land        | 56.09     | 82.73    | 26.66      | 1.08%                        | 1.3552        | 1.4908   | 0.1356     | 0.34%                        |  |  |
| Waste land        | 14.80     | 12.37    | -2.43      | -0.10%                       | 0.0706        | 0.2063   | 0.1357     | 0.34%                        |  |  |
| River             | 64.34     | 68.48    | 4.14       | 0.17%                        | 4.5243        | 4.7669   | 0.2426     | 0.60%                        |  |  |
| Forested area     | 2197.42   | 1768.63  | -428.78    | -17.33%                      | 32.7801       | 19.7931  | -12.9870   | -32.16%                      |  |  |
| Settlement        | 0         | 0        | 0          | 0                            | 0             | 0        | 0          | 0                            |  |  |
| Total ESV         | 2473.82   | 2084.27  | -389.55    | -15.75%                      | 40.38         | 27.79    | -12.59     | -31.17%                      |  |  |
| GNP (\$ million)  | 163.20**  | 701.09   |            |                              | 3.11**        | 9.10     |            |                              |  |  |
| ESV / GNP         | 15.2      | 3.0      |            |                              | 13.0          | 3.1      |            |                              |  |  |

Table 3 Total ecosystem service values estimated for each land cover category in the study area using Costanza et al. coefficient, and changes between 1988 and 2003

\* Contribution of change in ESV:  $CC_k = (ESV_{2003} - ESV_{1988}) / \sum ESV_{1988}$ 

\*\* Accounted to Net Present Value for comparisons.

#### Ecosystem Service Value: Menglun





ESV= \$27.79 million

#### Possible trend of ESV





| Foogrators Corrigon      |                      | Xishuangba                      | anna    |                                          | Menglun              |                      |          |               |  |
|--------------------------|----------------------|---------------------------------|---------|------------------------------------------|----------------------|----------------------|----------|---------------|--|
| Ecosystem Services       | ESV <sub>f1988</sub> | $\mathrm{ESV}_{\mathrm{f}2003}$ | Change  | $\operatorname{CC}_{\mathbf{f}}^{*}(\%)$ | ESV <sub>f1988</sub> | ESV <sub>f2003</sub> | Change   | $CC_f * (\%)$ |  |
| l gas regulation         | 4.14                 | 4.39                            | 0.26    | 0.01%                                    | 0.0736               | 0.0525               | -0.0211  | -0.05%        |  |
| 2 climate regulation     | 252.65               | 206.70                          | -45.95  | -1.86%                                   | 3.6504               | 2.2084               | -1.4419  | -3.57%        |  |
| 3 disturbance regulation | 5.59                 | 4.55                            | -1.04   | -0.04%                                   | 0.0818               | 0.0494               | -0.0323  | -0.08%        |  |
| 4 water regulation       | 49.69                | 51.20                           | 1.51    | 0.06%                                    | 3.0290               | 3.1367               | 0.1077   | 0.27%         |  |
| 5 water supply           | 24.97                | 24.32                           | -0.64   | -0.03%                                   | 1.2579               | 1.2666               | 0.0087   | 0.02%         |  |
| 6 erosion control        | 291.11               | 241.00                          | -50.11  | -2.03%                                   | 4.3111               | 2.6395               | -1.6716  | -4.14%        |  |
| 7 soil formation         | 12.14                | 10.16                           | -1.98   | -0.08%                                   | 0.1745               | 0.1068               | -0.0677  | -0.17%        |  |
| 8nutrient cycling        | 1031.02              | 838.42                          | -192.60 | -7.79%                                   | 15.0769              | 9.1146               | -5.9623  | -14.77%       |  |
| 9 waste treatment        | 156.96               | 142.94                          | -14.02  | -0.57%                                   | 2.6946               | 1.8895               | -0.8051  | -1.99%        |  |
| 10pollination            | 17.00                | 20.20                           | 3.20    | 0.13%                                    | 0.3457               | 0.4015               | 0.0558   | 0.14%         |  |
| 11 biological control    | 17.53                | 22.31                           | 4.78    | 0.19%                                    | 0.3841               | 0.5394               | 0.1554   | 0.38%         |  |
| 12habitat / refugia      | -                    | -                               | -       | -                                        | -                    | -                    | -        | -             |  |
| 13 food production       | 80.22                | 84.82                           | 4.60    | 0.19%                                    | 1.4663               | 1.5943               | 0.1281   | 0.32%         |  |
| 14 raw material          | 353.14               | 287.51                          | -65.63  | -2.65%                                   | 5.1520               | 3.1151               | -2.0370  | -5.04%        |  |
| 15 genetic resources     | 45.84                | 37.28                           | -8.57   | -0.35%                                   | 0.6704               | 0.4053               | -0.2651  | -0.66%        |  |
| 16 recreation            | 129.52               | 106.57                          | -22.95  | -0.93%                                   | 1.9765               | 1.2528               | -0.7237  | -1.79%        |  |
| 17 cultural              | 2.31                 | 1.91                            | -0.40   | -0.02%                                   | 0.0328               | 0.0199               | -0.0129  | -0.03%        |  |
| TOTAL                    | 2473.83              | 2084.28                         | -389.55 | -15.75%                                  | 40.3773              | 27.7923              | -12.5850 | -31.17%       |  |

#### Table 4 Estimated annual value of ecosystem functions (ESVf in \$ million per year)

\* Contribution of change in  $ESV_{f}$ :  $CC_{f} = (ESV_{f2003} - ESV_{f1988}) / \sum ESV_{f1988}$ 

### Change of landscape indices: Menglun



|                     | Index | Land    | 1988   | 2003   | Change |
|---------------------|-------|---------|--------|--------|--------|
| Number of patches   | NP    | Swidden | 566    | 137    | -429   |
|                     |       | Rubber  | 77     | 137    | 60     |
|                     |       | Forest  | 520    | 492    | -28    |
| Mean patch size     | MPS   | Swidden | 7.79   | 1.81   | -5.98  |
|                     |       | Rubber  | 52.42  | 95. 57 | 43.15  |
|                     |       | Forest  | 31. 40 | 20.03  | -11.36 |
| Largest patch index | LPI   | Swidden | 3.25   | 0.06   | -3.19  |
|                     |       | Rubber  | 5.39   | 18.06  | 12.68  |
|                     |       | Forest  | 11. 51 | 8.53   | -2.98  |
| Patch density       | PD    | Swidden | 1.69   | 0.41   | -1.28  |
|                     |       | Rubber  | 0.23   | 0.41   | 1 0.18 |
|                     |       | Forest  | 1.55   | 1.47   | -0.08  |

# Discussion



- the land use and land cover in the study area experienced significant changes. The increase of rubber plantation was at the expenses of ecologically important tropical forests and traditionally practiced swidden farming, especially, the mono-cultured rubber plantation in Menglun Township has become a dominant type of land use and land cover to support local economy;
- the estimated ecosystem service values (ESV) at both prefecture level and township level dropped by \$389.55 million/year and \$12.58 million/year respectively;
- The ESVs in 2003 were about 3 times as much as the values of local GNP, while they were 15 times and 13 times in Xishuangbanna and Menglun respectively in 1988;
- In the agriculture-based economy as Menglun Township, it can be assumed that a \$1 increase in GNP was at the cost of at least \$2 decrease in ESV.



- Tropical forests play an important role in ecosystem services and processes in the study areas;
- the abrupt shift of land use has resulted in aggregate decline of ecosystem services;
- significant changes occurred in the ecological functions such as nutrient cycling, erosion control and climate regulation, provision of raw materials and habitat or refugia for wildlife.



# The weakening of such services was convinced by a number of studies:

- Li and Sha (2005) presented that the rubber plantation and upland rice field were very low in nitrogen storage and mineralization rate and exhibited significant variation comparing with other land use patterns;
- Zhang et al. (1997) compared the runoff characteristics between tropical rainforest and rubber plantation;
- Liu et al. (2003) reported that rubber plantation is less capable of intercepting fog in dry season that compensates rainfall deficits in this area;
- Li (2001) described the climate changes in Menglun of Xishuangbanna for the last 40 years, and concluded that the climate becomes warmer and drier partly due to changes in tropical forest cover;
- Zhu et al. (2004) reported habitat change and biodiversity losses in Xishuangbanna due to forest fragmentation.
- Loss of traditional swidden field also resulted in loss of agrobiodiversity according to Guo et al. (2002)



- policy effects and market conditions;
- effort for the conservation of tropical forest ecosystem should be enhanced;
- provision of alternative economic opportunities, particularly for private rubber growers; .....
- appropriate ecological compensation mechanisms should be established on the basis of ESV; <u>Which ecosystems supply what services? How much?</u>
- "Green GNP" as performance indicator ?





# Thank you

# SpringerLink For recent publication: doi: 10.1007/\$10661-007-0067-7